Drosophila Genotype Influences Commensal Bacterial Levels

نویسندگان

  • Angela M Early
  • Niroshan Shanmugarajah
  • Nicolas Buchon
  • Andrew G Clark
چکیده

Host genotype can influence the composition of the commensal bacterial community in some organisms. Composition, however, is only one parameter describing a microbial community. Here, we test whether a second parameter-abundance of bacteria-is a heritable trait by quantifying the presence of four commensal bacterial strains within 36 gnotobiotic inbred lines of Drosophila melanogaster. We find that D. melanogaster genotype exerts a significant effect on microbial levels within the fly. When introduced as monocultures into axenic flies, three of the four bacterial strains were reliably detected within the fly. The amounts of these different strains are strongly correlated, suggesting that the host regulates commensal bacteria through general, not bacteria-specific, means. While the correlation does not appear to be driven by simple variation in overall gut dimensions, a genetic association study suggests that variation in commensal bacterial load may largely be attributed to physical aspects of host cell growth and development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Drosophila Microbiota Modulates Host Metabolic Gene Expression via IMD/NF-κB Signaling

Most metazoans engage in mutualistic interactions with their intestinal microbiota. Despite recent progress the molecular mechanisms through which microbiota exerts its beneficial influences on host physiology are still largely uncharacterized. Here we use axenic Drosophila melanogaster adults associated with a standardized microbiota composed of a defined set of commensal bacterial strains to ...

متن کامل

PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling.

Metazoans tolerate commensal-gut microbiota by suppressing immune activation while maintaining the ability to launch rapid and balanced immune reactions to pathogenic bacteria. Little is known about the mechanisms underlying the establishment of this threshold. We report that a recently identified Drosophila immune regulator, which we call PGRP-LC-interacting inhibitor of Imd signaling (PIMS), ...

متن کامل

Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species.

The resident prokaryotic microflora of the mammalian intestine influences diverse homeostatic functions of the gut, including regulation of cellular growth and immune responses; however, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. We have shown that bacterial coculture with intestinal epithelial cells modulates ubiquitin-mediated de...

متن کامل

Adaptive Remodeling of the Bacterial Proteome by Specific Ribosomal Modification Regulates Pseudomonas Infection and Niche Colonisation

Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disrupti...

متن کامل

Type 1 fimbriae in commensal Escherichia coli derived from healthy humans.

Type 1 fimbriae are one of the most important factors of Escherichia coli adaptation to different niches in the host. Our study indicated that the genetic marker--fimH gene occurred commonly in commensal E. coli derived from healthy humans but expression of the type 1 fimbriae was not observed. Identification of fim structural subunit genes (fimA-fimH) and recombinase fimE and fimB genes showed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017